11,385 research outputs found

    Transport of Single Molecules Along the Periodic Parallel Lattices with Coupling

    Full text link
    General discrete one-dimensional stochastic models to describe the transport of single molecules along coupled parallel lattices with period NN are developed. Theoretical analysis that allows to calculate explicitly the steady-state dynamic properties of single molecules, such as mean velocity VV and dispersion DD, is presented for N=1 and N=2 models. For the systems with N>2N>2 exact analytic expressions for the large-time dynamic properties are obtained in the limit of strong coupling between the lattices that leads to dynamic equilibrium between two parallel kinetic pathways.Comment: Submitted to J. Chem. Phy

    A head-up display format for transport aircraft approach and landing

    Get PDF
    An electronic flight-guidance display format was designed for use in evaluations of the collimated head-up display concept applied to transport aircraft landing. In the design process of iterative evaluation and modification, some general principles, or guidelines, applicable to electronic flight displays were suggested. The usefulness of an indication of instantaneous inertial flightpath was clearly demonstrated. Evaluator pilot acceptance of the unfamiliar display concepts was very positive when careful attention was given to indoctrination and training

    Spin-resolved electron-impact ionization of lithium

    Get PDF
    Electron-impact ionization of lithium is studied using the convergent close-coupling (CCC) method at 25.4 and 54.4 eV. Particular attention is paid to the spin-dependence of the ionization cross sections. Convergence is found to be more rapid for the spin asymmetries, which are in good agreement with experiment, than for the underlying cross sections. Comparison with the recent measured and DS3C-calculated data of Streun et al (1999) is most intriguing. Excellent agreement is found with the measured and calculated spin asymmetries, yet the discrepancy between the CCC and DS3C cross sections is very large

    Flame spread in laminar mixing layers: the triple flame

    Get PDF
    In the present paper we investígate flame spread in laminar mixing layers both experimentally and numerically. First, a burner has been designed and built such that stationary triple ñames can be stabilised in a coflowing stream with well defined linear concentration gradients and well defined uniform flow velocity at the inlet to the combustión chamber. The burner itself as well as first experimental results obtained with it are presented. Second, a theoretical model is formulated for analysis of triple flames in a strained mixing laycr generated by directing a fuel stream and an oxidizer stream towards each other. Here attention is focused on the stagnation región where by means of a similarity formulation the three-dimensional flow can be described by only two spatial coordinates. To solve the governing equations for the limiting case in which a thermal-diffusional model results, a numerical solution procedure based on self-adaptive mesh refinement is developed. For the thermal-diffusional model, the structure of the triple flame and its propagation velocity are obtained by solving numerically the governing similarity equations for a wide range of strain rates

    Reply to "Comment on Evidence for the droplet picture of spin glasses"

    Full text link
    Using Monte Carlo simulations (MCS) and the Migdal-Kadanoff approximation (MKA), Marinari et al. study in their comment on our paper the link overlap between two replicas of a three-dimensional Ising spin glass in the presence of a coupling between the replicas. They claim that the results of the MCS indicate replica symmetry breaking (RSB), while those of the MKA are trivial, and that moderate size lattices display the true low temperature behavior. Here we show that these claims are incorrect, and that the results of MCS and MKA both can be explained within the droplet picture.Comment: 1 page, 1 figur

    Evidence of non-mean-field-like low-temperature behavior in the Edwards-Anderson spin-glass model

    Get PDF
    The three-dimensional Edwards-Anderson and mean-field Sherrington-Kirkpatrick Ising spin glasses are studied via large-scale Monte Carlo simulations at low temperatures, deep within the spin-glass phase. Performing a careful statistical analysis of several thousand independent disorder realizations and using an observable that detects peaks in the overlap distribution, we show that the Sherrington-Kirkpatrick and Edwards-Anderson models have a distinctly different low-temperature behavior. The structure of the spin-glass overlap distribution for the Edwards-Anderson model suggests that its low-temperature phase has only a single pair of pure states.Comment: 4 pages, 6 figures, 2 table

    Velocity Distribution of Topological Defects in Phase-Ordering Systems

    Full text link
    The distribution of interface (domain-wall) velocities v{\bf v} in a phase-ordering system is considered. Heuristic scaling arguments based on the disappearance of small domains lead to a power-law tail, Pv(v)vpP_v(v) \sim v^{-p} for large v, in the distribution of vvv \equiv |{\bf v}|. The exponent p is given by p=2+d/(z1)p = 2+d/(z-1), where d is the space dimension and 1/z is the growth exponent, i.e. z=2 for nonconserved (model A) dynamics and z=3 for the conserved case (model B). The nonconserved result is exemplified by an approximate calculation of the full distribution using a gaussian closure scheme. The heuristic arguments are readily generalized to conserved case (model B). The nonconserved result is exemplified by an approximate calculation of the full distribution using a gaussian closure scheme. The heuristic arguments are readily generalized to systems described by a vector order parameter.Comment: 5 pages, Revtex, no figures, minor revisions and updates, to appear in Physical Review E (May 1, 1997

    No many-scallop theorem: Collective locomotion of reciprocal swimmers

    Full text link
    To achieve propulsion at low Reynolds number, a swimmer must deform in a way that is not invariant under time-reversal symmetry; this result is known as the scallop theorem. We show here that there is no many-scallop theorem. We demonstrate that two active particles undergoing reciprocal deformations can swim collectively; moreover, polar particles also experience effective long-range interactions. These results are derived for a minimal dimers model, and generalized to more complex geometries on the basis of symmetry and scaling arguments. We explain how such cooperative locomotion can be realized experimentally by shaking a collection of soft particles with a homogeneous external field

    Non-equilibrium Phase-Ordering with a Global Conservation Law

    Full text link
    In all dimensions, infinite-range Kawasaki spin exchange in a quenched Ising model leads to an asymptotic length-scale L(ρt)1/2t1/3L \sim (\rho t)^{1/2} \sim t^{1/3} at T=0T=0 because the kinetic coefficient is renormalized by the broken-bond density, ρL1\rho \sim L^{-1}. For T>0T>0, activated kinetics recovers the standard asymptotic growth-law, Lt1/2L \sim t^{1/2}. However, at all temperatures, infinite-range energy-transport is allowed by the spin-exchange dynamics. A better implementation of global conservation, the microcanonical Creutz algorithm, is well behaved and exhibits the standard non-conserved growth law, Lt1/2L \sim t^{1/2}, at all temperatures.Comment: 2 pages and 2 figures, uses epsf.st

    Persistence in systems with algebraic interaction

    Full text link
    Persistence in coarsening 1D spin systems with a power law interaction r1σr^{-1-\sigma} is considered. Numerical studies indicate that for sufficiently large values of the interaction exponent σ\sigma (σ1/2\sigma\geq 1/2 in our simulations), persistence decays as an algebraic function of the length scale LL, P(L)LθP(L)\sim L^{-\theta}. The Persistence exponent θ\theta is found to be independent on the force exponent σ\sigma and close to its value for the extremal (σ\sigma \to \infty) model, θˉ=0.17507588...\bar\theta=0.17507588.... For smaller values of the force exponent (σ<1/2\sigma< 1/2), finite size effects prevent the system from reaching the asymptotic regime. Scaling arguments suggest that in order to avoid significant boundary effects for small σ\sigma, the system size should grow as [O(1/σ)]1/σ{[{\cal O}(1/\sigma)]}^{1/\sigma}.Comment: 4 pages 4 figure
    corecore